- P. Lewintan,?S. Müller, P. Neff:?Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy.?Calculus of Variations and Partial Differential Equations, 2021, 60. Jg., Nr. 4, S. 1-46.?https://doi.org/10.1007/s00526-021-02000-x
- W. G. N?hring,?J.?Grie?er,?P.?Dondl,?L.?Pastewka:?Surface lattice Green's functions for high-entropy alloys.?Modelling and Simulation in Materials Science and Engineering, 2021, 30. Jg., Nr. 1, S. 015007.?https://doi.org/10.1088/1361-651X/ac3ca2
- P. Lewintan,?P. Neff:?Ne?as-Lions lemma revisited: An?L^p-version of the generalized Korn inequality for incompatible tensor fields.?Mathematical Methods in the Applied Sciences, 2021, 44. Jg., Nr. 14, S. 11392-11403.?http://doi.org/10.1002/mma.7498
- P. Lewintan,?P. Neff:?The?L^p-version of the generalized Korn inequality for incompatible tensor fields in arbitrary dimensions with p-integrable exterior derivative.?Comptes Rendus. Mathématique. Académie des Sciences, 2020.?preprint:?arXiv:1912.11551?
- P. Lewintan,?P. Neff:?L^p-trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions.?Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2022, 152. Jg., Nr. 6, S. 1477-1508.?https://doi.org/10.1017/prm.2021.62
- P. Lewintan,?P. Neff:?L^p -trace-free version of the generalized Korn inequality for incompatible tensor fields in arbitrary dimensions.?Comptes Rendus. Mathématique, 2021, 359. Jg., Nr. 6, S. 749-755.??https://doi.org/10.5802/crmath.216
- S. Conti, G. Dolzmann:?Numerical Study of Microstructures in Multiwell Problems in Linear Elasticity.?Variational Views in Mechanics. Birkh?user, Cham, 2021. S. 1-29.?https://doi.org/10.1007/978-3-030-90051-9_1
- F. Della Porta,?Angkana Rüland,?Jamie M Taylor, Christian Zillinger:?On a probabilistic model for martensitic avalanches incorporating mechanical compatibility.?Nonlinearity, 2021, 34. Jg., Nr. 7, S. 4844.?https://doi.org/10.1088/1361-6544/abfca9?preprint:?https://iopscience.iop.org/article/10.1088/1361-6544/abfca9/pdf
- A. Rüland,?A. Tribuzio:?On the Energy Scaling Behaviour of a Singularly Perturbed Tartar Square.?Archive for Rational Mechanics and Analysis, 2022, 243. Jg., Nr. 1, S. 401-431.?https://doi.org/10.1007/s00205-021-01729-1
- D. Knees, V. Shcherbakov:?A penalized version of the local minimization scheme for rate-independent systems.?Applied Mathematics Letters, 2021, 115. Jg., S. 106954.?https://doi.org/10.1016/j.aml.2020.106954?preprint:?https://www.researchgate.net/profile/Viktor-Shcherbakov/publication/347648611
- S. Bartels,?A. Bonito,?P. Hornung:?Modeling and simulation of thin sheet folding.?Interfaces and Free Boundaries, 2022.?https://doi.org/10.4171/IFB/478?preprint:?https://arxiv.org/pdf/2108.00937
- A. Rüland,?A. Tribuzio:??On the energy scaling behaviour of singular perturbation models with prescribed Dirichlet data involving higher order laminates.?
ESAIM: Control, Optimisation and Calculus of Variations,?2023, vol. 29, nr. 68.?https://doi.org/10.1051/cocv/2023047?preprint:?https://arxiv.org/abs/2104.05496
-
S. Bartels,?A. Bonito,?P. Tscherner:?Error Estimates For A Linear Folding Model.?preprint:?https://arxiv.org/abs/2205.05720
-
A. Rüland,A. Tribuzio:?On Scaling Laws for Multi-Well Nucleation Problems without Gauge Invariances.?Journal of Nonlinear Science,?2023, vol. 33, nr. 25.?https://doi.org/10.1007/s00332-022-09879-6?preprint:?https://arxiv.org/abs/2206.05164
-
M. Santilli,?B. Schmidt:?A Blake-Zisserman-Kirchhoff theory for plates with soft inclusions.?preprint:?https://arxiv.org/abs/2205.04512
-
B. Schmidt, J. Zeman:?A bending-torsion theory for thin and ultrathin rods as a?Γ-limit of atomistic models.?preprint:?https://arxiv.org/abs/2208.04199
-
B. Schmidt, J. Zeman:?A continuum model for brittle nanowires derived from an atomistic description by?Γ-convergence.?preprint:?https://arxiv.org/abs/2208.04195
-
M. K?hler, T. Neumeier,?J. Melchior, M. A. Peter, D. Peterseim,?D. Balzani:?Adaptive convexification of microsphere-based incremental damage for stress and strain softening at finite strains.?Acta Mechanica, 2022, 233. Jg., Nr. 11, S. 4347-4364?https://doi.org/10.1007/s00707-022-03332-1
-
A. Brunk,?H. Egger, O. Habrich,?and M. Lukacovy-Medvidova:?A structure-preserving variational discretization scheme for the Cahn-Hilliard Navier-Stokes system.?preprint:?https://doi.org/10.48550/arXiv.2209.03849