Skip to main content


University of Regensburg

21

Mandl S., Maiwald, B., Adlmanninger E., Birke R., Schlee S., Pru?ka A., Bittner P., Zenobi R., Soykan T., Beliu G., Broichhagen J., Hupfeld A. 

SNAPpa: A Photoactivatable SNAP-tag for the Spatiotemporal Control of Protein Labeling

JACS Au 2025, accepted

https://doi.org/10.1021/jacsau.5c00603 (external link, opens in a new window)

20

Lahmy* R., Hiefinger* C., Zeqiri* F., Hupfeld E., Mandl S., Stockerl W., Gschwind R.M., K?nig B., Hupfeld A. Alternative Mechanism of Enzymatic Photocontrol by Azobenzene

ACS Catal. 2025, 15, 12944–12958

https://doi.org/10.1021/acscatal.5c04126 (external link, opens in a new window)

19

Wieland M., Luizaga J., Duran C., Germscheid B., Rein J., Bruckmann A., Hiefinger C., Osuna S., Hupfeld A.
Reversible Substrate-Specific Photocontrol of the Chemotherapeutic Asparaginase(-Glutaminase) from Escherichia coli

ACS Catal. 2025, 15, 8462-8478
https://doi.org/10.1021/acscatal.5c01608 (external link, opens in a new window)

18

Kneuttinger A.

Mit Licht Proteinaktivit?t steuern: die Methode der n?chsten Generation

BioSpektrum 2023, 29, 815

https://doi.org/10.1007/s12268-023-2049-x (external link, opens in a new window)

17

Hiefinger* C., Mandl* S., Wieland* M., Kneuttinger A.

Chapter Eight - Rational design, production and in vitro analysis of photoxenoproteins
In Methods in Enzymology: Integrated Methods in Protein Biochemistry: PartC edited by A. K. Shukla, 2023, 247-288 
https://doi.org/10.1016/bs.mie.2022.12.003 (external link, opens in a new window)

16

Kneuttinger A.C.

A guide to designing photocontrol in proteins: methods, strategies and applications.
Biol. Chem. 2022, 403, 573-613
https://doi.org/10.1515/hsz-2021-0417 (external link, opens in a new window)

15

Kneuttinger A.C., Sterner R.

The Structure of Carbamoylphosphate Synthetase Unravels Central Functional Features of a Key Metabolic Multienzyme Complex.
Biochemistry 2021, 60, 3422–3423
https://doi.org/10.1021/acs.biochem.1c00280 (external link, opens in a new window)

14

Wurm J.P., Sung S., Kneuttinger A.C., Hupfeld E., Sterner E., Wilmanns M., Sprangers R.
Molecular basis for the allosteric activation mechanism of the heterodimeric imidazole glycerol phosphate synthase complex.

Nat. Commun. 2021, 12, 2748
https://doi.org/10.1038/s41467-021-22968-6 (external link, opens in a new window)

13

Simeth* N.A., Kinateder* T., Rajendran C., Nazet J., Merkl R., Sterner R., K?nig B., Kneuttinger A.C.

Towards Photochromic Azobenzene-Based Inhibitors for Tryptophan Synthase.
Chem. - Eur. J. 2021, 27, 2439–2451
https://doi.org/10.1002/chem.202004061 (external link, opens in a new window)

12

Kneuttinger A.C., Rajendran C., Simeth N.A., Bruckmann A., K?nig B., Sterner R.

Significance of the protein interface configuration for allostery in imidazole glycerol phosphate synthase.
Biochemistry 2020, 59, 2729–2742
https://doi.org/10.1021/acs.biochem.0c00332 (external link, opens in a new window)

11

Kneuttinger A.C., Zwisele S., Straub K., Bruckmann A., Busch F., Kinateder T., Gaim B., Wysocki VH., Merkl R., Sterner R.

Light-regulation of tryptophan synthase by combining protein design and enzymology.

Int. J. Mol. Sci. 2019, 20, E5106
https://doi.org/10.3390/ijms20205106 (external link, opens in a new window)

10

Kneuttinger A.C., Straub K., Bittner P., Simeth N.A., Bruckmann A., Busch F., Rajendran C., Hupfeld E., Wysocki V.H., Horinek D., K?nig B., Merkl R., Sterner R. 
Light regulation of enzyme allostery through photo-responsive unnatural amino acids.

Cell Chem. Biol. 2019, 26, 1501–1514
https://doi.org/10.1016/j.chembiol.2019.08.006 (external link, opens in a new window)

9

Kneuttinger A.C., Winter M., Simeth N.A., Heyn K., Merkl R., K?nig B., Sterner R.

Artificial light regulation of an allosteric bienzyme complex by a photosensitive ligand.
Chembiochem 2018, 19, 1750–1757
https://doi.org/10.1002/cbic.201800219 (external link, opens in a new window)

8

Simeth N.A., Kneuttinger A.C., Sterner R., K?nig B.
Photochromic coenzyme Q derivatives: switching redox potentials with light.

Chem. Sci. 2017, 8, 6474–6483
https://doi.org/10.1039/C7SC00781G (external link, opens in a new window)

Ludwig-Maximilians-University Munich

7

Heidinger L., Kneuttinger A.C., Kashiwazaki G., Weber S., Carell T., Schleicher E.

Direct observation of a deoxyadenosyl radical in an active enzyme environment.
FEBS Lett. 2016, 590, 4489–4494
https://doi.org/10.1002/1873-3468.12498 (external link, opens in a new window)

6

Kneuttinger A.C., Kashiwazaki G., Prill S., Heil K., Müller M., Carell T.
Formation and direct repair of UV-induced dimeric DNA pyrimidine lesions.

Photochem. Photobiol. 2014, 90, 1–14
https://doi.org/10.1111/php.12197 (external link, opens in a new window)

5

Kneuttinger A.C., Heil K., Kashiwazaki G., Carell T.
The radical SAM enzyme spore photoproduct lyase employs a tyrosyl radical for DNA repair.

Chem. Commun. 2013, 25, 722–724
https://doi.org/10.1039/C2CC37735G (external link, opens in a new window)

4

Brandmayr C., Wagner M., Brückl T., Globisch D., Pearson D., Kneuttinger A.C., Reiter V., Hienzsch A., Koch S., Thoma I., Thumbs P., Michalakis S., Müller M., Biel M., Carell T.

Isotope-based analysis of modified tRNA nucleosides correlates modification density with translational efficiency.
Angew. Chem. Int. Ed. 2012, 51, 11162–11165
https://doi.org/10.1002/anie.201203769 (external link, opens in a new window)

3

Reiter V., Matschkal D.M., Wagner M., Globisch D., Kneuttinger A.C., Müller M., Carell T.

The CDK5 repressor CDK5RAP1 is a methylthiotransferase acting on nuclear and mitochondrial RNA.
Nucleic Acids Res. 2012, 40, 6235–6240
https://doi.org/10.1093/nar/gks240 (external link, opens in a new window)

2

Globisch D., Pearson D., Hienzsch A., Brückl T., Wagner M., Thoma I., Thumbs P., Reiter V., Kneuttinger A.C., Müller M., Siber S.A., Carell T.

Systems-based analysis of modified tRNA bases.
Angew. Chem. Int. Ed. 2011, 50, 9739–9742
https://doi.org/10.1002/anie.201103229 (external link, opens in a new window)

1

Heil, K., Kneuttinger, A.C., Schneider, S., Lischke, U., Carell, T.

Crystal structures and repair studies reveal the identity and the base-pairing properties of the UV-induced spore photoproduct DNA lesion.
Chem. - Eur. J. 2011, 17, 9651–9657
https://doi.org/10.1002/chem.201100177 (external link, opens in a new window)

To top